上个博客写了Hadoop2.6.0的环境部署,下面写一个简单的基于数字排序的小程序,真正实现分布式的计算,原理就是对多个文件中的数字进行排序,每个文件中每个数字占一行,排序原理是按行读取后分块进行排序,最后对块进行合并,通俗来说就是首先对小于100的数据范围进行排序,然后对100-1000之间的数据进行排序,最后对大于1000的数据进行排序,最终这3块合成之后也一定是按顺序排列的,代码如下:
import java.io.IOException;import java.util.StringTokenizer;import org.apache.hadoop.conf.Configuration;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapreduce.Job;import org.apache.hadoop.mapreduce.Mapper;import org.apache.hadoop.mapreduce.Reducer;import org.apache.hadoop.mapreduce.Partitioner;import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;import org.apache.hadoop.util.GenericOptionsParser;public class Sort { public static class Map extends Mapper
将源文件上传到服务器后,进行编译,hadoop2.6.0的编译方式和之前的hadoop1.2.1不太一样,这次需要引入3个jar文件分别是:
share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.6.0.jar
share/hadoop/common/hadoop-common-2.6.0.jar
share/hadoop/common/lib/commons-cli-1.2.jar
编译命令这里为:
javac -classpath ../share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.6.0.jar:../share/hadoop/common/hadoop-common-2.6.0.jar:../share/hadoop/common/lib/commons-cli-1.2.jar Sort.java
如果忽略要警告可以添加-Xlint:deprecation参数进行编译:
javac -classpath ../share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.6.0.jar:../share/hadoop/common/hadoop-common-2.6.0.jar:../share/hadoop/common/lib/commons-cli-1.2.jar -Xlint:deprecation Sort.java
编译成功之后打包操作:
jar -cvf sort.jar *.class
打成sort.jar之后建立几个文件,格式就如下图所示:
然后上传到HDFS文件系统之后,可以用hadoop来跑一下:
hadoop jar sort.jar Sort /sort /sortoutput
注意:输出目录,不能使用原来的,如果原来存在一个目录,不管是空的还是非空的,那么hadoop都会报错,所以应该指定一个不存在的目录,让hadoop去新建他
等运行完毕,然后查看输出就行了:
hdfs dfs -cat /sortoutput/*
这样就简单的使用hadoop平台以分布式的方式运行了java应用